Quiz (1)

1) Let $f(x) = 2^x$. Please answer the following.

- a) Give the unsimplified form of the Lagrange polymomial for f that passes throught the nodes with x coordinates $x_0 = 0$, $x_1 = 1$, and $x_2 = 2$.
- b) Use the Lagrange polynomial computed in part (a) to approximate $\sqrt{2}$. What are the absolute and relative errors in your approximation (use your calculator approximation of $\sqrt{2}$ as the exact value of $\sqrt{2}$).
- 2) Calculate Fitting straight line Curve fitting using Least square method

x	5	4	3	2	1
у	1	2	3	4	5

Quiz (2)

- 1. Use the nodes $x_0 = \frac{\pi}{4}$, $x_1 = \frac{\pi}{2}$ and $x_2 = \frac{3\pi}{4}$ to find a Lagrange polynomial that approximates $\sin(x)$.

 And find $\sin\left(\frac{3\pi}{8}\right)$. (Do not simplify your answer)
- 2. Calculate Fitting exponential equation $y = ae^{bx}$ Curve fitting using Least square method

х	0	0.5	1	1.5	2	2.5
у	0.10	0.45	2.15	9.15	40.35	180.75

Quiz (3)

1) The following x - y data is given

x	15	18	22
у	24	37	25

The Newton's divided difference second order polynomial for the above data is given by

$$f_2(x) = b_0 + b_1(x - 15) + b_2(x - 15)(x - 22)$$

The value of b_1 is

a) -1.048

b) 0.1433

c) 4.333

d) 24.00

2) Calculate Fitting exponential equation $y = ab^x$ - Curve fitting using Least square method

x	0	1	2	3	4	5	6	7
у	10	21	35	59	92	200	400	610

Quiz (4)

1) Find Solution using Newton's Divided Difference Interpolation formula

x	300	304	305	307
у	2.4771	2.4829	2.4843	2.4871

find $y(3\overline{01})$.

2) Calculate Fitting second degree parabola - Curve fitting using Least square method

x	1	2	3	4	5	6	7
y	- 5	- 2	5	16	31	50	73

Quiz (5)

1) Find Solution of an equation $2x^3 - 4x + 1$ using Divided Difference Interpolation formula at x = 3.8 Step value (h) = 0.5 ($x_0 = 2$ and $x_n = 4$).

2) Calculate Fitting exponential equation $y = ax^b$ - Curve fitting using Least square method

x	2	3	4	5
y	27.8	62.1	110	161

Quiz (6)

1) Find Missing terms in interpolation table

x	2	3	4	5	6
y	45	49.2	54.1	?	67.4

1) Fit the curve $y = a x^3 + b$ to the data:

$$(7.9, 0.2)$$
, $(11.9, 0.4)$, $(16.4, 0.8)$ and $(22.6, 1.6)$.

Quiz (7)

1) Find x at y = 6 using Lagrange's Inverse Interpolation formula

x	168	120	72	63
y	3	7	9	10

1) Fit the curve $y = \frac{1}{(a x^2 + b)}$ to the data:

(1. 0.5). (2. 0.4). (4. 0.3). (6. 0.2). (8. 0.1). Hence find y(5.1).

Quiz (8)

- 1) Find Solution of an equation $x^3 x + 1$ using Newton's forward Difference Interpolation formula at x = 3.8 Step value (h) = 0.5 ($x_0 = 2$ and $x_n = 4$).
- 2) Calculate Fitting exponential equation $y = ae^{-bx^2}$ Curve fitting using Least square method

(1, 9.01). (2, 6.01). (3, 6.07). (4, 2.02). (5, 0.22). (8, 0.02).

Quiz (9)

1) Find Solution using Newton's Forward Difference formula

x	1891	1901	1911	1921	1931
y	46	66	81	93	101

Finding y(1895).

2) Fit the curve $y = \frac{1}{(a x^2 + b)}$ to the data:

(1. 0.5). (2. 0.4). (4. 0.3). (6. 0.2). (8. 0.1). Hence find y(5.1).